
Energy, Renewables & Fuel Poverty Event 2019

Who are West Highland Housing?

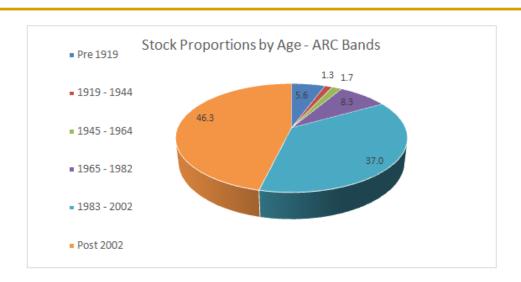
- Link Group Subsidiary
- Based in Oban
- 787 units own stock
- 83 units managed for Link Group
- Stock in rural and across 8 islands
- 20 Staff members

Challenges in Argyll

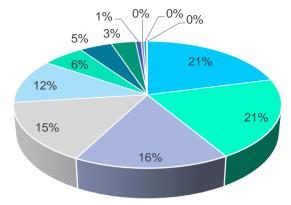
- Rural and island environment
- Off the gas grid
 - No gas main beyond Helensburgh
 - Town gas in Oban & Campbeltown
 - WHHA 6 units with gas

- High incidence rate of fuel poverty across Argyll
 - 45 % HH in fuel poverty
 - 14% HH in extreme fuel poverty
 - 75% of single pensioners

Causes of Fuel Poverty in Argyll


Causes of Fuel Poverty

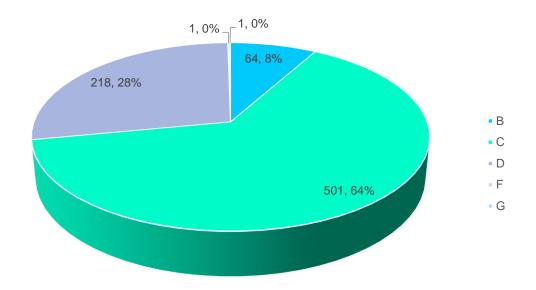
- 48% of houses off the gas grid
- Heating by oil or electric
 - Gas c4.0 p/kWh
 - THTC "heat" 12.08p/kWh PAYG
 - THTC "heat" 16.51p/kWh DDPB
 - E10 similar
- Larger and detached houses
 - More heat loss walls
- Lower proportion of flats
- Exposure wind and rain
- Low switching rates



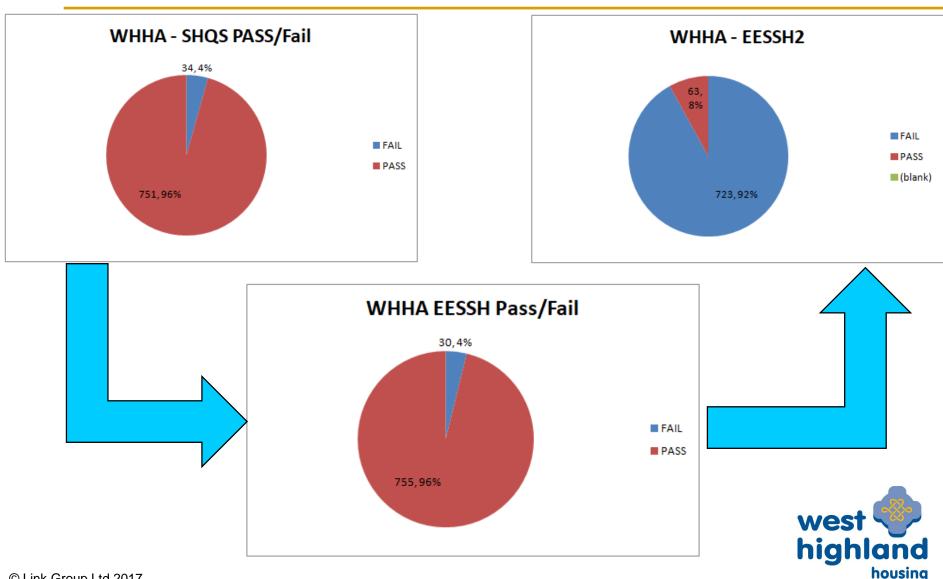
Challenges for West Highland Housing

- 75% stock less than 25 years old
- Timber kits from 97mm
- Room in Roof construction
- Traditionally installed electric/electric storage

Stock by Heating Type 31/3/19



- Wet Electric E10
- THTC Storage
- Biomass DH Wet CH
- Quantum Storage THTC Tariff
- Air to Water Wet CH
- E10 Electric Ceramic
- · Air to Air
- GSHP Wet CH
- Gas Combi Wet CH
- Solid Fuel Wet CH
- Electric U/F
- Oil Wet CH


Stock by EPC Band

Stock by EPC Band 31/3/19

SHQS, EESSH and EESSH2

WHHA – Renewables Deployment

- Started deploying low carbon/renewables in 2004
- 60% of stock has either a primary or secondary measure
- Heat Pumps
 - GSHP
 - Air to Air Heat Pumps
 - Air to Water Heat Pumps
- Solar Thermal
- Biomass District Heating

What we learned! - GSHP

• GSHP (2005)

- Grant driven
- New technology and remote locations don't work
- Contractor led design was not cohesive
- Poor quality installation and commissioning
- Lack of understanding with staff and users
- Failed compressors
- What would we do differently
 - Increased site supervision boreholes
 - Develop local support networks
 - Understand availability of parts
 - Single point of responsibility for design
 - Robust commissioning

What we learned! - Solar Thermal

- Solar Thermal (2007-2012)
 - Driven by grant availability
 - Mixed success rates
 - Installer dependant
 - Panels warped with heat
 - Leaks
 - Wrong additives added
 - Annual Service required
 - 4 Yearly glycol changed
 - Requires roof access

What we learned! - Biomass

Biomass District Heating

- Use of a subsidiary for commercial heat sales where RSL is a Charity
- Boiler sizing is key
- Metering can be challenging
- Metering is expensive
- HIU insulation is key to reduce heat loss
 - Improvements since 2012
- Management of sites is time consuming
- Small scale sites are financially marginal
- Tariff at 10.31 p/kWh is perceived as expensive by customers

Decarbonisation Fund 2018/19

Decarbonisation Fund for Social Housing

- SG £3.5 M funding pot through to March 2020
 - Bids August 2018
 - Award September 2018
- Energy Efficient Scotland Transition Programme
- Innovative technologies considered favourably.
- Allows for measures that are not fully recognised by SAP methodology subject to:
 - effective monitoring and evaluation,
 - tenant engagement,
 - landlords are satisfied that the innovation provides tangible benefits for energy efficiency

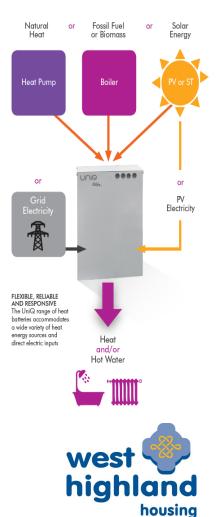
WHHA Decarbonisation Bid

Scope

- 145 Off Gas grid units due to have heating upgrades (EPC Band C & D)
- Installation of High Temperature Air to Water Heat Pumps
- Installation of wet central heating systems
- Installation of sufficient Sunamp heat batteries to facilitate "load Shifting"

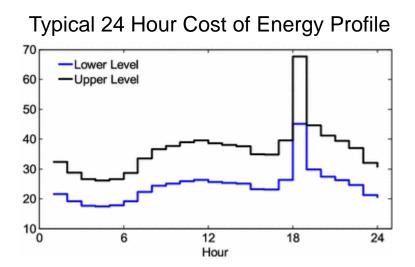
Outcomes

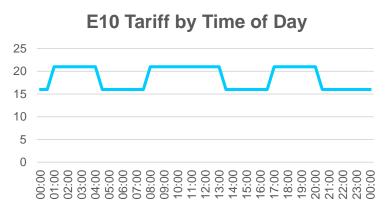
- Reduce direct and indirect carbon associated with properties
- Reduce energy consumption and energy cost for tenants
- Achieve EESSH 2 (SAP 81)



What is a Sunamp Heat Battery?

- Modular Unit
- Contains a phase change material
- Material changes state as it heats up
- Variety of heat sources possible
- Delivers heat for hot water and space heating
- Stores 4 times more heat than water
- Minimal standing losses (A+ rated)
- Life of over 40,000 cycles





What is "Load Shifting"?

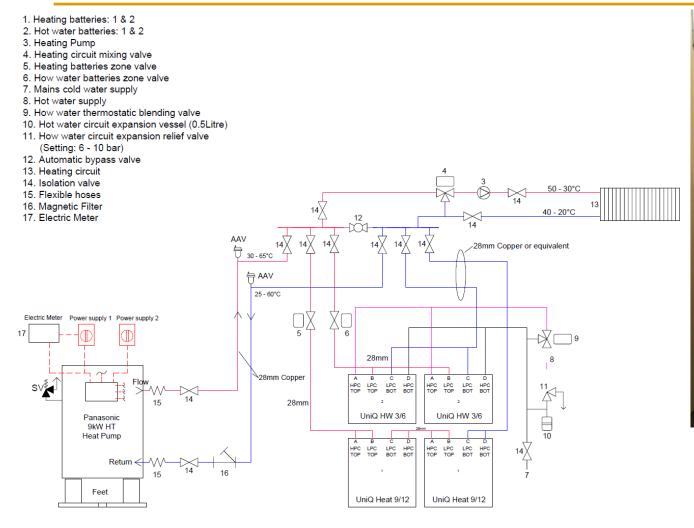
- Reducing electrical demand or purchase of energy at certain time
- Helps balance the grid
- Contracted or incentivised (£) to knocking off loads at certain times
- Changing world with more renewables- Solo Energy, Octopus Agile

wes

Design Phase

Challenges

- Identify a suitable High Temperature Monoblock Heat Pump
- Must work in west coast winter climate cold (-15oc) and damp (high humidity)
- Develop a deliverable and replicable design for sector
- Batteries
 - Hot water (notionally 2 * 3kWh c 170 ltrs @ 40 degrees)
 - Space heat (notionally 2 * 9 kWh c 600 ltrs@ 40 degrees))
- Develop and validate a model to demonstrate
 - SAP increase,
 - Carbon savings
 - Energy cost reduction
- Simple controls for users
 - Separate charging from consumption. Heat pumps configured to run at E10 times
 - Simple time clock for heating, TRV's on rads
 - Instantaneous hot water



Control Strategy

- Minimise use of Peak Rate Energy
 - Model shows 90% heat delivered from off peak rate
- Off Peak Strategy via Sunamp Controller
 - calls heat pump to run at E10 times
 - if space heat demand direct to radiators surplus to heat battery
 - Mixing valve modulates moving more heat to battery as rooms are satisfied
 - if no heat demand direct to battery till battery charged
- Peak Rate Strategy
 - Demand for hot water
 - Battery charged heat from battery
 - Battery empty run heat pump to charge battery to 50%
 - Demand for space heating
 - Battery charged heat from battery
 - Battery empty run direct to radiators in weather compensation till room satisfied

Final Design

Project Funding and Monitoring

Funding

- £2.3 M Project
- £1 M WHHA Business Plan contribution
- £800K Decarbonisation Fund
- £500K RHI (WHHA forward fund)

Monitoring and Evaluation

- Appointed Changeworks
- Pre, Post and 1 year surveys
- Tinytag data Heat and Humidity from sample properties
- 12 month bill information
- Detailed monitoring at a sample property

Project Outcomes

- Model showing (based on initial 39 Units)
 - 59% reduction in carbon
 - 55% reduction in running costs
 - 24 SAP increase (average) range 17-28 points
 - 52% will achieve EESSH 2 SAP 81
 - 48% will be short of EESSH2 by 1-2 SAP points

